
Project Naurk: Lecture 1

Ramkumar Ramachandra

February 7, 2013

Ramkumar Ramachandra Project Naurk: Lecture 1

Expressing ideas precisely: What is a prime number?

The objective of this course is to teach students how to think precisely. We will now
answer the question in plain English, and then go on to successively replace the
English constructs with expressions that a machine can evaluate

I A number whose only factors are one and itself

I A natural number that is not a multiple of any natural number except 1 and the number itself

I A natural number that is <not a multiple of> any natural number except 1 and the number itself

I (natural number <not a multiple of> any natural number except 1 and the number itself)

Ramkumar Ramachandra Project Naurk: Lecture 1

Enter: Expressions

Problem 1: Assert if 27 is a prime number. Start off by specializing the previous
expression to fit this problem statement

I (natural number <not a multiple of> any natural number except 1 and the number itself)

I (27 <not a multiple of> any natural number except 1 and 27)

Let us formalize our talk, and call the item above an expression. The first property of
an expression is that it can be evaluated.
Notice how the following expressions are similar. All of them can be evaluated to
produce a value.

I (something <not a multiple of> something else)

I (3 + 5) evaluates to the value 8

I (<square> 5) evaluates to the value 25

Ramkumar Ramachandra Project Naurk: Lecture 1

Formalizing the algorithm I

Consider the expression (m is a chocolate). This can evaluate to either True or False,
depending on whether or not m is a chocolate. Set our initial problem aside for a
moment and look at the following expressions:

1. (m is a chocolate), where m could be any item from a mixed bag of goodies

2. (any (m is a chocolate)), where m is an item from a mixed bag of goodies

3. (all (m is a chocolate)), where m is an item from a mixed bag of goodies

What each of these mean to a machine:

1. Pick any (random) item from the bag, and assert that it’s a chocolate

2. Exhaustively pick items from the bag, and assert that any of them is a chocolate

3. Exhaustively pick items from the bag, and assert that all of them are chocolates

What we’re doing: To find out the nature of the items in the bag, we have designed a
random experiment where we pick up and test items from the bag. To be able to
conclusively state that all the items in the bag are chocolates, we keep repeating
procedure 1 until we’ve exhausted all the items. Hence 3 is just a restatement of 1,
when we want a conclusion. 2 addresses a different problem.

Ramkumar Ramachandra Project Naurk: Lecture 1

Formalizing the algorithm II

Back to our original problem. To assert if 27 is prime. Notice the remarkable similarity
between these two statements. We have actually expressed our algorithm as a random
experiment!

1. (m is a chocolate), where m could be any item from a mixed bag of goodies

2. (27 <not a multiple of> any natural number except 1 and 27)

To instruct the machine more concretely, let us rephrase it to get a conclusive result.
After all, we do conclusively want to know whether or not 27 is prime.

1. (all (m is a chocolate)), where m is an item from a mixed bag of goodies

2. (all (27 <not a multiple of> m)), where m is a natural number not 1, not 27

Ramkumar Ramachandra Project Naurk: Lecture 1

Enter: Literals and symbols

(all (27 <not a multiple of> m)), where m is a natural number not 1, not 27

Now observe the following expressions:

I (27 <not a multiple of> 6)

I (27 <not a multiple of> m)

In the first expression, we have used the literals 27 and 6 to represent their
corresponding integer values. In the second, we have used the symbol m to represent
an arbitrary value.
What do I mean when I say “value”? It could be a single number, a set of decimal
numbers, a list of complex numbers, or just about anything else. However, an
expression like (27 <not a multiple of> [complex number]) doesn’t make much sense.

I m is a symbol used to represent one value in a range of integer values. We can
rewrite it as m ∈ [1, 2, 3 ..] - [1, 27] = [2, 3 .. 26, 28 ..]

(all (27 <not a multiple of> m); m ∈ [2, 3 .. 26, 28 ..])

Ramkumar Ramachandra Project Naurk: Lecture 1

Enter: Type system and data structures

Every programming language needs to provide features for data representation. Data
can be represented by literals, or equivalently, bound symbols. Simple data types
provided by common programming languages include integers, fixed point decimal
numbers, floating point (decimal numbers), fractions, complex numbers, and
characters. Many come with composite data types like lists, strings, hashtables, and
vectors.

(all (27 <not a multiple of> m) ; m ∈ [2, 3 .. 26, 28 ..])

Here, 27 and m clearly represent integers. If m were bound to a decimal number
instead, this expression wouldn’t make much sense, and the machine would throw up.
We will see the mechanism for this in the next slide.

Ramkumar Ramachandra Project Naurk: Lecture 1

Enter: Operators

(all (27 <not a multiple of> m); m ∈ [2, 3 .. 26, 28 ..])

What does 35*x mean to a machine? Several definitions need to be in order:

I * is an operator defined to act on two operands

I The symbol x could be bound to any value. To bind, we can use another
operator =, and say (x = 4) to bind x to 4.

I More restrictions are required to be imposed on *: It is defined only when both
its operands are numbers (integers, decimals or complex). So, an expression like
(3*“ram”) is meaningless1

<not a multiple of> is a function2

(all (27 <not a multiple of> m); m ∈ [2, 3 .. 26, 28 ..])

1unless ofcourse we define such operations explicitly
2we have conveniently omitted the discussion of ∈ and all for the moment

Ramkumar Ramachandra Project Naurk: Lecture 1

Expressions II

(all (27 <not a multiple of> m); m ∈ [2, 3 .. 26, 28 ..])

Time to observe. Notice how we’ve progressively stripped out the English in favor of
expressions. Now look at each one individually:

1. (27 <not a multiple of> m)

2. (all [expression in 1])

3. [expression in 2]; m ∈ [2, 3 .. 26, 28 ..]

Observe the general forms:

1. ([value] [function3] [value]). <not a multiple of> is clearly an function of two
parameters4

2. ([function] [expression]) => ([function] [value]) after evaluation of the expression

3. [expression] along with some additional data

3the term function encapsulates operators as well
4operators:operands = functions:parameters

Ramkumar Ramachandra Project Naurk: Lecture 1

S-expressions

(all (27 <not a multiple of> m) ; m ∈ [2, 3 .. 26, 28 ..])

From the observations on the previous slide, there are functions of two parameters like
<not a multiple of>, as well as functions of one parameter like <square>. More
generally there are functions of n parameters5. Therefore, this is a more consistent
way of writing expressions:

([function] [parameter 1] [parameter 2] ..)

Voila! Formally, an expression written in this form is called an s-expression. Let’s
rewrite our expression as an s-expression now:

(all (<not a multiple of> 27 m) ; m ∈ [2, 3 .. 26, 28 ..])

5 imagine a function that adds n numbers by repeatedly using the + operator, which adds two numbers together

Ramkumar Ramachandra Project Naurk: Lecture 1

A closer look at <not a multiple of>

(all (<not a multiple of> 27 m) ; m ∈ [2, 3 .. 26, 28 ..])

Now, we simply have to design the function <not a multiple of>. First, think about
what the function does in specific cases.

(<not a multiple of> 3 2)

It means that when 3 is divided by 2, it leaves a nonzero remainder, provided that 2 is
less than 3. Rewriting it in this form, we get

(<not equal to zero> (<remainder after division> 3 2))

Many languages already provide the <remainder after division> operator. However,
<not equal to zero> seems to be nonstandard, but languages already provide
operators for comparison.

(<not equal to> (<remainder after division> 3 2) 0)

For the sake of brevity, let us represent these operators by symbols.

(/= (% 3 2) 0)

Finally, when we write the final expression, we have to make sure that m is less than
27.

(all (/= (% 27 m) 0) ; m ∈ [2, 3 .. 26])

Ramkumar Ramachandra Project Naurk: Lecture 1

Enter: Functions

(all (/= (% 27 m) 0); m ∈ [2, 3 .. 26])

Notice how functions and operators are also represented by symbols. Here, we’re
assuming that all these symbols are bound to functions provided by the programming
language. Let us now attempt to write a custom function to square a given number
for example.

(λ x (* x x))

Our function is ready. It accepts a parameter (the symbol x), and returns the square
of that number. Carefully observe the above expression: λ itself is a in-built function
of one parameter. All the expressions we’ve seen so far evaluate to a value (data); the
one above doesn’t- it evaluates to a function. Now let us use the function to square
the number 3.

((λ x (* x x)) 3)

We could have bound some symbol to this function, say ν. The above expression
would then look like this

(ν 3)

Pretty similar to writing (+ 2 4). Now, imagine that the programming language
provides me the function + to add two numbers. And imagine that I want to add
three: 1, 2 and x. How would I do it?

(+ 2 (+ 1 x))

The inner expression doesn’t evaluate to a value until x is passed to it- it remains a
function and is passed as-it-is to the outer expression.

Ramkumar Ramachandra Project Naurk: Lecture 1

A closer look at all

(all (/= (% 27 m) 0); m ∈ [2, 3 .. 26])

Now to eliminate the one unexplained symbol: ∈. To do this, we first have to
formalize all

I all is a function of two parameters: A (function of one parameter) and a list. The
function here is the predicate that each member of the list must satisfy, and the
parameter is the list itself.

I What all does: It picks items from the list and checks if all of them satisfy the
predicate, and accordingly return True or False. The predicate itself is a function
of one parameter that returns a boolean.

In our problem, the list is the list of numbers from 2 to 26, and the predicate is to
check that 27 is <not a multiple of> the given number. Let us now rewrite our
expression eliminating the need for the mysterious ∈:

(all (λ m (/= (% 27 m) 0)) [2, 3 .. 26])

Ramkumar Ramachandra Project Naurk: Lecture 1

Putting it all together

(all (λ m (/= (% 27 m) 0)) [2, 3 .. 26])

We are now ready to get rid of our s-expression crutches and implement this program
in a real-world programming language6. Most programming languages use parenthesis
just as separators, to explicitly define operator precedence, for example.

1. 3 * 4 - 6

2. 3 * (4 - 6)

So finally, in Haskell, the final program is written as

all (\m -> 27 ‘mod‘ m /= 0) [2, 3 .. 26]

Yes, the \ is supposed to look like a λ if you squint hard enough.

6In a Lisp like Common Lisp, Scheme, or Clojure, the s-expression is the final form

Ramkumar Ramachandra Project Naurk: Lecture 1

